Topics covered in the syllabus are

  • Classification of matter
  • Scientific method
  • Nomenclature and formulas of binary compounds
  • Polyatomic ions and other compounds
  • Determination of atomic masses
  • Mole concept
  • Percent composition
  • Empirical and molecular formula
  • Writing chemical equations and drawn representations
  • Balancing chemical equations
  • Applying mole concept to chemical equations (stoichiometry)
  • Determining limiting reactants, theoretical and percent yield of reactions
  • Electrolytes and properties of water
  • Molarity and preparation of solutions
  • Redox and single replacement reactions
  • Double replacement reactions
  • Combustion reactions
  • Addition reactions
  • Decomposition reactions
  • Precipitation reactions and solubility rules
  • Acid-Base reactions and formation of a salt by titration
  • Balancing redox reactions
  • Simple redox titrations
  • Electron configuration and the Aufbau principle
  • Valence electrons and Lewis dot structures
  • Periodic trends
  • Table arrangement based on electronic properties
  • Properties of light and study of waves
  • Atomic spectra of hydrogen and energy levels
  • Quantum mechanical model
  • Quantum theory and electron orbitals
  • Orbital shape and energies
  • Spectroscopy
  • Lewis Dot structures
  • Resonance structures and formal charge
  • Bond polarity and dipole moments
  • VSEPR models and molecular shape
  • Polarity of molecules
  • Lattice energies
  • Hybridization
  • Molecular orbitals and diagrams
  • Electron configuration and the Aufbau principle
  • Valence electrons and Lewis dot structures
  • Periodic trends
  • Table arrangement based on electronic properties
  • Properties of light and study of waves
  • Atomic spectra of hydrogen and energy levels
  • Quantum mechanical model
  • Quantum theory and electron orbitals
  • Orbital shape and energies
  • Spectroscopy
  • Law of conservation of energy, work, and internal energy
  • Endothermic and exothermic reactions
  • Potential energy diagrams
  • Calorimetry, heat capacity, and specific heat
  • Hess's Law
  • Heat of formation/combustion
  • Bond energies
  • Measurement of gases
  • General gas laws - Boyle, Charles, Combined, and Ideal
  • Dalton's Law of partial pressure
  • Molar volume of gases and stoichiometry
  • Graham's Law
  • Kinetic Molecular Theory
  • Real gases and deviation from ideal gas law
  • Graham's law demonstration
  • Law of conservation of energy, work, and internal energy
  • Endothermic and exothermic reactions
  • Potential energy diagrams
  • Calorimetry, heat capacity, and specific heat
  • Hess's Law
  • Heat of formation/combustion
  • Bond energies
  • Structure and bonding
  • Metals, network, and molecular
  • Ionic, hydrogen, London, van der Waals
  • Vapor pressure and changes in state
  • Heating and cooling curves
  • Composition of solutions
  • Colloids and suspensions
  • Separation techniques
  • Effect on biological systems
  • Rates of reactions
  • Factors that affect rates of reactions/ collision theory
  • Reaction Pathways
  • Rate equation determination
  • Rate constants
  • Mechanisms
  • Method of initial rates
  • Integrated rate laws
  • Activation energy and Boltzmann distribution
  • Characteristics and conditions of chemical equilibrium
  • Equilibrium expression derived from rates
  • Factors that affect equilibrium
  • Le Chatelier's principle
  • The equilibrium constant
  • Solving equilibrium problems
  • Definition and nature of acids and bases
  • Kw and the pH scale
  • pH of strong and weak acids and bases
  • Polyprotic acids
  • pH of salts
  • Structure of Acids and Bases
  • Characteristics and capacity of buffers
  • Titrations and pH curves
  • Choosing Acid-Base Indicators
  • pH and solubility
  • Ksp Calculations and Solubility Product
  • Laws of thermodynamics
  • Spontaneous process and entropy
  • Spontaneity, enthalpy, and free energy
  • Free energy
  • Free energy and equilibrium
  • Rate and Spontaneity
  • Balancing redox equations
  • Electrochemical cells and voltage
  • The Nernst equation
  • Spontaneous and non-spontaneous equations
  • Chemical applications
top